Lecture 9
Source Separation

Yi-Hsuan Yang Ph.D.
http://www.citi.sinica.edu.tw/pages/yang/
yang@citi.sinica.edu.tw

Music & Audio Computing Lab,
Research Center for IT Innovation,
Academia Sinica
Reference

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Music Processing Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Music Representations</td>
</tr>
<tr>
<td>2</td>
<td>Fourier Analysis of Signals</td>
</tr>
<tr>
<td>3</td>
<td>Music Synchronization</td>
</tr>
<tr>
<td>4</td>
<td>Music Structure Analysis</td>
</tr>
<tr>
<td>5</td>
<td>Chord Recognition</td>
</tr>
<tr>
<td>6</td>
<td>Tempo and Beat Tracking</td>
</tr>
<tr>
<td>7</td>
<td>Content-Based Audio Retrieval</td>
</tr>
<tr>
<td>8</td>
<td>Musically Informed Audio Decomposition</td>
</tr>
</tbody>
</table>

Meinard Müller
Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications
483 p., 249 illus., hardcover
ISBN: 978-3-319-21944-8
Springer, 2015

Accompanying website:
www.music-processing.de
Why Source Separation

• Because we are obsessed with this topic ...
 ➢ “Complex and quaternionic principal component pursuit and its application to audio separation,” SPL 2016
 ➢ “Informed monaural source separation of music based on convolutional sparse coding,” ICASSP 2015
 ➢ “Vocal activity informed singing voice separation with the IKALA dataset,” ICASSP 2015
 ➢ “Sparse modeling for artist identification: Exploiting phase information and vocal separation,” ISMIR 2013
 ➢ “Low-rank representation of both singing voice and music accompaniment via learned dictionaries,” ISMIR 2013
 ➢ “On sparse and low-rank matrix decomposition for singing voice separation,” ACM MM 2012
Why Source Separation

• The “two” holy grails in MIR
 ➢ automatic transcription
 ➢ source separation

Figures from [Mueller, FPM, Chapter 8, Springer 2015]
Application: Instrument Equalization

Figure from [Mueller, FPM, Chapter 8, Springer 2015]
Application: Instrument Equalization

(a) original (b) harmonic (c) percussive

Figure from [Mueller, FPM, Chapter 8, Springer 2015]
Application: Audio Editing

Figure from [Mueller, FPM, Chapter 8, Springer 2015]
Types of Separation Problems

• Type of sources

 ➢ separating multiple speakers (a.k.a. *cocktail party effect*)

 ➢ **W9**: separating *multiple instruments* (e.g., piano, violin)

 ➢ **W10**: separating *harmonic/percussive components*

 ➢ **W11**: separating *singing voice* from the accompaniments
Types of Separation Problems

• \#sources vs. \#channels
 ➢ overdetermined vs underdetermined
 ➢ single-channel vs. multi-channel

• Amount of side information
 ➢ blind source separation vs. “guided” source separation

• Online or offline
Why Source Separation is Difficult?

- Harmonic overlaps + underdetermined
Why Source Separation is Difficult?

• Harmonic overlaps + underdetermined
Approach

- **Unsupervised**: rule-based
- **Supervised**: learn from “clean sources”
Approach

- **W9**: multiple instruments separation
 => *dictionary based* methods: *nonnegative matrix factorization (NMF)* and friends

- **W10**: harmonic/percussive separation
 => *median filtering* and friends

- **W11**: singing voice separation
 => *low-rank based* methods: *robust principal component analysis (RPCA)* and friends
Nonnegative Matrix Factorization (NMF)

- Factorize (decompose) a matrix into two
NMF: Basic Idea

Figure from [Mueller, FPM, Chapter 8, Springer 2015]
NMF: Basic Idea

Given a nonnegative matrix V of dimensions $F \times N$, NMF is the problem of finding a factorization

$$V \approx WH$$

where W and H are nonnegative matrices of dimensions $F \times K$ and $K \times N$, respectively.

K is usually chosen such that $FK + KN << FN$, hence reducing the data dimension, but not always.
NMF: Basic Idea

Along VQ, PCA or ICA, NMF provides an unsupervised linear representation of data

\[\mathbf{v}_n \approx \mathbf{W} \mathbf{h}_n \]

- data vector
- “explanatory variables”
- “basis”, “dictionary”
- “patterns”
- “regressors”
- “expansion coefficients”
- “activation coefficients”

and \(\mathbf{W} \) is learnt from the set of data vectors \(\mathbf{V} = [\mathbf{v}_1 \ldots \mathbf{v}_N] \).

- **nonneg. of \(\mathbf{W} \)** ensures interpretability of the dictionary (features \(\mathbf{w}_k \) and data \(\mathbf{v}_n \) belong to same space).
- **nonneg. of \(\mathbf{H} \)** tends to produce part-based representations because subtractive combinations are forbidden.

From Cédric Févotte’s slides
NMF for Music Audio

Figure from Byran & Sun's slides
NMF for Music Audio

Figure from [Mueller, FPM, Chapter 8, Springer 2015]
NMF for Music Audio
NMF for Face Images
NMF: Algorithm

We seek to minimize a measure of fit between data V and model WH, subject to nonnegativity of W and H:

$$\min_{W,H \geq 0} D(V|WH) = \sum_{fn} d([V]_{fn}||WH]_{fn})$$

where $d(x|y)$ is a scalar cost function.

Regularization terms are often added to $D(V|WH)$ to favor sparsity or smoothness of W or H.

From Cédric Févotte’s slides
NMF: Algorithm

- Block-coordinate update of H given $W^{(i-1)}$ and W given $H^{(i)}$
 \[
 \min_{H \geq 0} D(V|W^{(i-1)}H), \quad \min_{W \geq 0} D(V|WH^{(i)})
 \]

- The updates of W and H are equivalent by symmetry:
 \[
 V \approx WH \iff V^T \approx H^T W^T
 \]

- The objective function is separable in the columns of H or the rows of W:
 \[
 D(V|WH) = \sum_n D(v_n|Wh_n)
 \]

From Cédric Févotte’s slides
NMF: Algorithm

- **Cost function**: Euclidean distance

\[
\|V - WH\|^2 = \sum_{ij} (V_{ij} - WH_{ij})^2
\]

- **Fix \(W \), update \(H \): additive update

\[
H_{a\mu} \leftarrow H_{a\mu} + \eta_{a\mu} \left[(W^TV)_{a\mu} - (W^TWH)_{a\mu} \right].
\]

- hard to set the learning rate \(\eta_{a\mu} \)
- hard to ensure nonnegativity
NMF: Algorithm

• **Cost function**: Euclidean distance

\[\|V - WH\|^2 = \sum_{ij} (V_{ij} - WH_{ij})^2 \]

• Fix \(W \), update \(H \): **multiplicative** update

\[
H_{a\mu} \leftarrow H_{a\mu} + \eta_{a\mu} \left[(W^T V)_{a\mu} - (W^T W H)_{a\mu} \right].
\]

\[
\eta_{a\mu} = \frac{H_{a\mu}}{(W^T W H)_{a\mu}}.
\]

\[
H_{a\mu} \leftarrow H_{a\mu} \frac{(W^T V)_{a\mu}}{(W^T W H)_{a\mu}}
\]
NMF: Algorithm

• Fix W, update H: *multiplicative* update

\[H_{a\mu} \leftarrow H_{a\mu} \frac{(W^T V)_{a\mu}}{(W^T W H)_{a\mu}} \]

- easily preserve nonnegativity
- easy to implement
- fast (of complexity $O(FKN)$ per iteration)
- zeros remain zeros!
NMF: Algorithm

Algorithm: NMF \((V \approx WH)\)

Input: Nonnegative matrix \(V\) of size \(K \times N\)
\(\quad\) Rank parameter \(R \in \mathbb{N}\)
\(\quad\)Threshold \(\varepsilon\) used as stop criterion

Output: Nonnegative template matrix \(W\) of size \(K \times R\)
\(\quad\)Nonnegative activation matrix \(H\) of size \(R \times N\)

Procedure: Define nonnegative matrices \(W^{(0)}\) and \(H^{(0)}\) by some random or informed initialization. Furthermore set \(\ell = 0\). Apply the following update rules (written in matrix notation):

\[
\begin{align*}
(1) \quad H^{(\ell+1)} &= H^{(\ell)} \odot ((W^{(\ell)})^\top V) \odot ((W^{(\ell)})^\top W^{(\ell)} H^{(\ell)}) \\
(2) \quad W^{(\ell+1)} &= W^{(\ell)} \odot (V (H^{(\ell+1)})^\top) \odot (W^{(\ell)} H^{(\ell+1)} (H^{(\ell+1)})^\top) \\
(3) \quad \text{Increase } \ell \text{ by one.}
\end{align*}
\]

Repeat the steps (1) to (3) until \(\|H^{(\ell)} - H^{(\ell-1)}\| \leq \varepsilon\) and \(\|W^{(\ell)} - W^{(\ell-1)}\| \leq \varepsilon\) (or until some other stop criterion is fulfilled). Finally, set \(H = H^{(\ell)}\) and \(W = W^{(\ell)}\).
NMF for Music Audio Decomposition

Figure from [Mueller, FPM, Chapter 8, Springer 2015]
NMF: Random Initialization

Figure from [Mueller, FPM, Chapter 8, Springer 2015]
NMF: Harmonic Template Initialization

Figure from [Mueller, FPM, Chapter 8, Springer 2015]
NMF: Score-Informed Initialization

zeros remain zeros!

zeros remain zeros!

Figure from [Mueller, FPM, Chapter 8, Springer 2015]
Dealing with Transients

- In acoustics and audio, a transient is a high amplitude, short-duration sound at the beginning of a waveform that occurs in phenomena such as musical sounds.
NMF: Score-Informed Initialization + Onset

Figure from [Mueller, FPM, Chapter 8, Springer 2015]
Unsupervised vs Supervised NMF

Unsupervised: decompose the matrix itself

\[
\min_{W,H} \| V - WH \|_F
\]

Supervised: use pre-trained templates

Training phase

\[
\min_{W_A,H_A} \| V_A - W_A H_A \|_F
\]

\[
\min_{W_B,H_B} \| V_B - W_B H_B \|_F
\]

Testing phase

\[
\min_H \| V_{\text{mix}} - [W_A, W_B]H \|_F
\]
NMF: Implementation

- Matlab
- Python
 - http://bmcfee.github.io/librosa/generated/librosa.decompose.decompose.html#librosa.decompose.decompose
 - Or,
 - https://www.csie.ntu.edu.tw/~cjlin/nmf/
Toolboxes for NMF-based Separation

• Flexible Audio Source Separation Toolkit (FASST)
 ➢ http://bass-db.gforge.inria.fr/fasst/
 ➢ implemented in C++, Matlab and python
 ➢ more sophisticated

\[V_j = (W_j^{ex} U_j^{ex} G_j^{ex} H_j^{ex}) \odot (W_j^{ft} U_j^{ft} G_j^{ft} H_j^{ft}) \]

• OpenBliSSART
 ➢ implemented in C++, can be run on GPUs
Parameters

- Window size, hop size
- Number of templates
- Normalization of the templates
- Cost function of NMF
- Reconstruction method
Reconstruction

- Need to recover the time-domain signals
Reconstruction

1. Given a mixture y, compute the STFT Y
2. Decompose the magnitude $|Y|$ into two matrices A and B (which are also real values)
3. Make A (or B) complex by adding the phase $\angle Y$ back
4. Do inverse STFT (ISTFT)
Reconstruction

1. Given a mixture y, compute the STFT Y
2. Decompose $|Y|$ into A and B
3. Make A (or B) complex by adding the phase $\angle Y$ back
4. Do ISTFT

- https://www.ee.columbia.edu/~dpwe/resources/matlab/sgram/
- myspecgram
- abs, angle
- ispecgram

- $|Y| = \text{abs}(Y)$, $\angle Y = \text{angle}(Y)$
- $Y = |Y| \cdot \cos(\angle Y) + i \cdot |Y| \cdot \sin(\angle Y)$;
Reconstruction: Wiener Filter (Binary)

\[M_A[t, f] = \begin{cases}
1, & \text{if } A[t, f] > B[t, f] \\
0, & \text{otherwise}
\end{cases} \]

\[\hat{A} = |Y| \odot M_A \]

- Use \(\hat{A} \) instead of \(A \) in the ISTFT
- \(M_A \) is referred to as a binary mask
Reconstruction: Wiener Filter (Soft)

- $M_A[t, f] = \frac{A[t, f]^c}{A[t, f]^c + B[t, f]^c}$
- $\hat{A} = |Y| \odot M_A$
- Use \hat{A} instead of A in the ISTFT
- M_A is referred to as a *soft mask*
- $c = 1$ or 2
Evaluation

• Source-to-distortion ratio (SDR)
• Source-to-interference ratio (SIR)
• Source-to-artifact ratio (SAR)

- true sources: a, b
- estimated sources: ae, be
- SDR(a): how ae is similar to a
- SIR(a): how ae is similar to b
- SAR(a): how ae is not similar to either a or b
- we can also compute SDR(b), SIR(b), SAR(b)
Evaluation

- **BSS-icons Eval** (Matlab)
 - http://bass-db.gforge.inria.fr/bss_eval/bss_eval_sources.m

```matlab
% [SDR,SIR,SAR,perm]=bss_eval_sources(se,s)
%
% Inputs:
% se: nsrc x nsamp1 matrix containing estimated sources
% s: nsrc x nsamp1 matrix containing true sources
% 
% Outputs:
% SDR: nsrc x 1 vector of Signal to Distortion Ratios
% SIR: nsrc x 1 vector of Source to Interference Ratios
% SAR: nsrc x 1 vector of Sources to Artifacts Ratios
% perm: nsrc x 1 vector containing the best ordering of estimated sources
% in the mean SIR sense (estimated source number perm(j) corresponds to
% true source number j)
```
Evaluation

- **mir_eval** (python)

- mir_eval can be used in most MIR tasks (chord recognition, onset detection, segmentation, etc)
Evaluation

- **Source-to-distortion ratio (SDR)**
- **Source-to-interference ratio (SIR)**
- **Source-to-artifact ratio (SAR)**
 - true sources: a, b
 - estimated sources: ae, be

- ae can be slightly shorter than a due to the windowing => *chop off* the end of a such that the length of a and ae are the same
Extension: Different Cost Functions*

• β-divergence

\[
d_\beta(x|y) = \frac{x^\beta}{\beta(\beta - 1)} + \frac{y^\beta}{\beta} - \frac{xy^{\beta-1}}{\beta - 1}
\]

• $\beta = 2$ (Euclidean): $d(x|y) = \frac{1}{2} (x - y)^2$

• $\beta = 1$ (Kullback-Leibler): $d(x|y) = x \log \frac{x}{y} - x + y$

• $\beta = 0$ (Itakura-Saito): $d(x|y) = \frac{x}{y} - \log \frac{x}{y} - 1$.

- Alternating direction method of multipliers for non-negative matrix factorization with the beta-divergence, ICASSP 2014
- Nonnegative matrix factorization with the Itakura-Saito divergence: with application to music analysis, Neural Computing 2009
Extension: Different Cost Functions*

• Euclidean distance

\[H_{a\mu} \leftarrow H_{a\mu} \frac{(W^T V)_{a\mu}}{(W^T W H)_{a\mu}} \quad W_{ia} \leftarrow W_{ia} \frac{(V H^T)_{ia}}{(W H H^T)_{ia}} \quad (4) \]

• KL divergence

\[H_{a\mu} \leftarrow H_{a\mu} \frac{\sum_i W_{ia} V_{i\mu}/(WH)_{i\mu}}{\sum_k W_{ka}} \quad W_{ia} \leftarrow W_{ia} \frac{\sum_\mu H_{a\mu} V_{i\mu}/(WH)_{i\mu}}{\sum_\nu H_{a\nu}} \quad (5) \]

Algorithms for non-negative matrix factorization, NIPS 2000
Extension: Temporal Continuity & Sparsity

\[D(X \| BG) = \sum_{k,t} [X]_{k,t} \log \frac{[X]_{k,t}}{[BG]_{k,t}} - [X]_{k,t} + [BG]_{k,t}. \]

\[c_t(G) = \sum_{j=1}^{J} \frac{1}{\sigma_j^2} \sum_{t=2}^{T} (g_{t,j} - g_{t-1,j})^2. \] squared difference

\[c_s(G) = \sum_{j=1}^{J} \sum_{t=1}^{T} f(g_{j,t}/\sigma_j) \] usually implemented by the L1 norm

\[\nabla c(B, G) = \nabla c_t(B, G) + \alpha \nabla c_t(G) + \beta \nabla c_s(G). \]

Monaural sound source separation by nonnegative matrix factorization with temporal continuity and sparseness criteria, TASLP 2007
Extension: More Regularizers

The objective function is:

\[
\text{argmin}_H D(M | WH) + \mu |H|_1
\]

\[
0.5 \times | |X - WH|_\text{Fro}^2 + \alpha \times \text{l1_ratio} \times | |\text{vec}(W)|_1 + \alpha \times \text{l1_ratio} \times | |\text{vec}(H)|_1 + 0.5 \times \alpha \times (1 - \text{l1_ratio}) \times | |W|_\text{Fro}^2 + 0.5 \times \alpha \times (1 - \text{l1_ratio}) \times | |H|_\text{Fro}^2
\]

```python
>>> import numpy as np
>>> X = np.array([[1, 1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]])
>>> from sklearn.decomposition import NMF
>>> model = NMF(n_components=2, init='random', random_state=0)
>>> model.fit(X)
NMF(alpha=0.0, beta=1, eta=0.1, init='random', l1_ratio=0.0, max_iter=200, n_components=2, nls_max_iter=2000, random_state=0, shuffle=False, solver='cd', sparseness=None, tol=0.0001, verbose=0)
```
Extension: Template Adaptation

- Pre-train the templates offline, but update them online according to the target signal

Drum transcription using partially fixed non-negative matrix factorization with template adaptation, ISMIR 2015
Extension: Adding a Noise Dictionary

- To account for the possible noises in the signal

<table>
<thead>
<tr>
<th>W^p</th>
<th>W^v</th>
<th>W^g</th>
<th>W^d</th>
<th>W^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>piano</td>
<td>violin</td>
<td>guitar</td>
<td>drum</td>
<td>noise</td>
</tr>
</tbody>
</table>
Extension: Discriminative NMF

- Instead of training the dictionaries (templates) for different instruments separately; training them “jointly” to reduce the “cross-talk”

\[M \approx WH = [W^1 \ldots W^S][H^1; \ldots ; H^S] \]

\[
\hat{W} = \arg\min_{W} \sum_{l} \gamma_l D_\beta \left(S^l \mid W^l \hat{H}^l(M, W) \right),
\]

where \(\hat{H}(M, W) = \arg\min_{H} D_\beta(M \mid \tilde{W}H) + \mu |H|_1 \),

Discriminative NMF and its application to single-channel source separation, ICASSP 2014
Extension: User-guided Separation

Interactive refinement of supervised and semi-supervised sound source separation estimates, ICASSP 2013
Extension: Complex NMF and Friends

- Explicitly take phase into account

\[S \approx \sum_{k=1}^{K} W(m, k) H(k, n) e^{i\phi_k(m, n)}. \]

- Or, do things directly in the time-domain

- Complex NMF: A new sparse representation for acoustic signals, ICASSP 2009
- Beyond NMF- time-domain audio source separation without phase reconstruction, ISMIR 2013
- Informed monaural source separation of music based on convolutional sparse coding, ICASSP 2015
- Multi-resolution signal decomposition with time-domain spectrogram factorization, ICASSP 2015
- A score-informed shift-invariant extension of complex matrix factorization for improving the separation of overlapped partials in music recordings, ICASSP 2016
Extension: Time-domain Separation

Informed monaural source separation of music based on convolutional sparse coding, ICASSP 2015
Extension: Tensor Decomposition
Extension: Dictionaries for Pitch Estimation

- Decompose the input as a linear combination of individual components
 - templates of instruments => source separation
 - templates of notes => multi-pitch estimation
 - templates of chords => chord recognition

Discriminative non-negative matrix factorization for multiple pitch estimation, ISMIR 2012
Quiz

- we have two dictionaries $\mathbf{X}_{\text{vio}} \in \mathbb{R}^{n \times m}$ and $\mathbf{X}_{\text{flu}} \in \mathbb{R}^{n \times m}$ for violin and flute, satisfying
 - each dictionary contains spectral templates of different pitches;
 - the two dictionaries have one-to-one correspondence (i.e. $\mathbf{X}_{\text{vio}}^{(j)}$ and $\mathbf{X}_{\text{flu}}^{(j)}$ correspond to the same pitch, $\forall j$);

for a violin recording \mathbf{Y}_*, we compute \mathbf{W}_* s.t. $\mathbf{Y}_* \simeq \mathbf{X}_{\text{vio}} \mathbf{W}_*$; then, what would happen if we take $\mathbf{X}_{\text{flu}} \mathbf{W}_*$?
Extension: Audio Mosaicing

- Given a *target* and a *source* recording, the goal of *audio mosaicing* is to generate a mosaic recording that conveys musical aspects (like melody and rhythm) of the target, using sound components taken from the source.

- https://www.audiolabs-erlangen.de/resources/MIR/2015-ISMIR-LetItBee/
Extension: Dictionaries for Classification

- Music annotation and retrieval using unlabeled exemplars: correlation and sparse codes, SPL 2015
- A systematic evaluation of the bag-of-frames representation for music information retrieval, TMM 2014