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Abstract—We present a comprehensive performance study of a
new time-domain approach for estimating the components of an
observed monaural audio mixture. Unlike existing time–frequency
approaches that use the product of a set of spectral templates and
their corresponding activation patterns to approximate the spec-
trogram of the mixture, the proposed approach uses the sum of
a set of convolutions of estimated activations with prelearned dic-
tionary filters to approximate the audio mixture directly in the
time domain. The approximation problem can be solved by an
efficient convolutional sparse coding algorithm. The effectiveness
of this approach for source separation of musical audio has been
demonstrated in our prior work, but under rather restricted and
controlled conditions, requiring the musical score of the mixture
being informed a priori and little mismatch between the dictionary
filters and the source signals. In this paper, we report an evaluation
that considers wider, and more practical, experimental settings.
This includes the use of an audio-based multipitch estimation al-
gorithm to replace the musical score, and an external dataset of
audio single notes to construct the dictionary filters. Our result
shows that the proposed approach remains effective with a larger
dictionary, and compares favorably with the state-of-the-art non-
negative matrix factorization approach. However, in the absence of
the score and in the case of a small dictionary, our approach may
not be better.

Index Terms—Convolutional sparse coding (CSC), multipitch
estimation (MPE), monaural music source separation, nonneg-
ative matrix factorization (NMF), phase, score-informed source
separation.

I. INTRODUCTION

THE goal of source separation is to recover the source sig-
nals that constitute an observed mixture. The observed

mixture can be either single-channel or multi-channel, depend-
ing on the number of sensors employed to record the source sig-
nals. When there are fewer observed channels than sources, the
separation problem is underdetermined and some prior knowl-
edge about the source signals is needed to improve the sepa-
ration. This is the case in many applications including musical
audio, where there are usually no more than two channels.
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A popular approach to source separation is to learn a model
for each source (e.g. instrument) beforehand using a collection
of clean source signals (i.e. a recording of the signal from a
specific source with no interference from other sources). For
audio source separation, this can be done by learning a set of
spectral templates for each source, supposing that the spectral
templates can cover the possible variations of a specific source
in the frequency domain. Given a mixture, it is expected that a
linear combination of the spectral templates corresponding to a
specific source can be used to reconstruct the source signal that
composes that mixture. Algorithms based on this idea, such as
non-negative matrix factorization (NMF) [1]–[7], complex ma-
trix factorization (CMF) [8]–[10] and probabilistic latent com-
ponent analysis (PLCA) [11], [12], have been widely studied in
the last decade. As the spectral templates are used as the basis
to decompose the observed spectrogram, we also refer to them
as the dictionary vectors.

In this paper, we instead study the decomposition of the mix-
ture directly in the time domain, a less studied approach for
source separation. Specifically, we propose to learn a set of
time-domain filters from the clean source signals, and then use
the sum of convolutions of estimated activations with the dictio-
nary filters to approximate the audio mixture in the time domain.
The potential advantages of this approach include:

1) While the frequency-domain approach needs to partition
an input signal into successive frames with fixed-length
short-time windows for Short-time Fourier Transform
(STFT), the time-domain approach decomposes the mix-
ture continuously without such fine-grained binning.
Therefore, the time-domain approach may better capture
the local temporal information of the signal.

2) While the frequency-domain approach decomposes the
spectrum of each short-time frame independently and
requires additional regularizers for ensuring the tem-
poral continuity between adjacent frames in the recov-
ered sources [5], the time-domain approach inherently
accounts for temporal continuity.

3) While the frequency-domain approach requires specifi-
cally designed mechanisms to take care of phase [13]–
[15], the phase information is implicitly considered when
decomposing the signal in the time domain.

4) Many audio effects such as reverberation can usually be
modeled in terms of convolution [16] and can therefore
be easily taken into account by the proposed approach.

Mathematically, the time-domain approach to source sepa-
ration can be formulated as follows. We are given a monaural
time-domain audio signal x ∈ Rn and a number of dictionary
filters {di}k

i=1 , where di ∈ Rti ,∀i ∈ K = {1, 2, ..., k}, and n,
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Fig. 1. Illustration of the proposed CSC approach to source separation. The
dictionary filters are constructed in the training stage from the clean source
signals, which are assumed to be similar with the unobserved source signals
that compose an input mixture given in the testing stage. The activation patterns
are estimated by CSC and are used to recover the unobserved source signals by
summing up the corresponding convolutions.

ti and k denote the length of the signal, the length of the ith
dictionary filter, and number of filters, respectively. The goal is
to find the activation patterns {αi}k

i=1 associated with each of
the filters by solving the following optimization problem:

arg min
{αi }i∈K

f

(
x −

∑
i∈K

di ∗ αi

)
+

∑
i∈K

λi g(αi) , (1)

where f(·) is a measurement of the fidelity of the approximation,
g(·) is a regularizer weighted by the parameters λi , and ∗ is the
convolution operator. As the activation patterns can be assumed
to be sparse [5], a natural solution is to use the l2 norm for f(·)
and the sparsity-enforcing l1 norm for g(·) [17], [18],1 leading
to the formulation of the so-called convolutional sparse coding
(CSC) [20], [21].

The present paper is motivated by the development of an effi-
cient solver of the CSC problem [22], [23] that reduces the time
complexity of a previous alternating direction method of multi-
pliers (ADMM) approach [24], [25] from O(k3n + kn log n)
to O(kn log n). This boost in efficiency makes it practical to em-
ploy CSC for source separation problems, which usually require
a great many dictionary filters.

Fig. 1 illustrates the proposed CSC-based approach. The
filters for different sources represent non-overlapping groups
{Gj}p

j=1 , where ·
⋃p

j=1Gj = K and p denotes the number of
sources. Therefore, the jth source can be recovered by:

ej =
∑
i∈Gj

di ∗ αi . (2)

By virtue of Eq. (1), we have ej ∈ Rn and x �
∑p

j=1 ej .
The effectiveness of this approach for monaural music source

separation was validated under rather restricted and controlled

1The l2 and l1 norms are defined as ‖a‖2 =
√∑

i
a2

i and ‖a‖1 =
∑

i
|ai |,

respectively, where | · | takes the absolute value. The term ‘sparsity’ suggests
that only a few elements of the vector a are non-zero. It has been shown that
the l1 norm is the only norm that is both convex and sparsity-enforcing [19].

conditions in a prior work [26]. This paper extends and expands
the prior work in the following respects:

1) In [26], we considered a simpler, score-informed setting
to deactivate dictionary filters that do not match the score,
i.e., mismatch of either pitch or instrument information
associated to the filters. This simplifies that task and usu-
ally improves the separation quality, as these mismatched
ones will likely not be used in the approximation of the
input mixture when solving Eq. (1). However, the ap-
proach is not practical in real-world applications, because
the musical score is not always available. Therefore, we
propose to use an audio-based, automatic multi-pitch es-
timation (MPE) algorithm [27]–[30] to replace the role of
the musical score.2 As we do not assume the availability
of scores in this setting, it can be considered as a blind
source separation problem.3

2) In [26], we used a held-out set whose acoustic content
is close to that of the test set for learning the dictionary
filters, so as to minimize the possible mismatch between
the filters and the test mixtures. In this paper, we consider
a separate dataset comprising audio of single notes to learn
the dictionary, thereby improving the generalizability of
the experimental results.

3) We propose a heuristic to allow for arbitrary segmentation
of the audio input for separation with alleviated boundary
discontinuity, which will be explained in Section III-B,
due to the use of circular convolution in Eqs. (1) and (2).

4) We report a comprehensive evaluation of the proposed
time-domain approach against state-of-the-art frequency-
domain approaches in a variety of experimental settings.
A parameter sensitivity test for CSC is also reported.

Although our evaluation only concerns music, we expect that
this methodology can be easily extended to speech.

The paper is organized as follows. Section II reviews related
work. Section III describes the CSC algorithm and the proposed
source separation approach. Then Sections IV–VI report the
experiments and Section VII concludes the paper.

II. RELATED WORK

Source separation is a fundamental signal processing prob-
lem. For many applications in music, such as audio remixing,
remastering, and restoration, source separation is usually a re-
quired pre-processing step as the commercial music contents are
mostly provided in only one or two channels. We might want to
recover all the sources to manipulate and process them individ-
ually [31], [32], or to isolate a specific source (e.g. the singing
voice or the lead guitar) from the mixture [33]–[36]. Source
separation is also important for many other music information
retrieval problems, such as instrument recognition [37], [38],
singing voice analysis and editing [39], [40], beat tracking [41],
drum pattern analysis [42], and automatic music transcription
[43]–[45], amongst others.

2We define MPE as a task that aims at automatically transcribing the notes of
a polyphonic musical signal [28]. Therefore, MPE provides information about
the pitch, onset and duration, but not the instruments.

3However, we do assume that we know the instruments presenting in the
pieces (and strictly speaking this counts as a side information). We need this
information for building the dictionary for source separation but not for MPE.
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Since source separation for polyphonic music is typically an
underdetermined problem, the use of prior knowledge or side
information has been explored for better separation quality.
First, it is usually assumed that the instruments contained in the
mixture are known a priori. Clean source signals for the instru-
ments are usually taken as prior knowledge to build dictionaries
or models to characterize the sources [1]–[12]. Another impor-
tant type of side information that has been increasingly used in
the literature is the musical score [31], [45]–[50], which pro-
vides information about the notes (i.e. pitch, onset and duration)
of a music piece. For example, the pitch and onset information
can be employed to impose constraints on both the spectral tem-
plates and the activation patterns for NMF [46]. Beyond musical
scores, other side information such as user input [51]–[53], au-
tomatically estimated pitch information [54], [55], and the cover
version of a song [56] have also been exploited.

NMF is arguably the most widely studied technique for source
separation over the past few years. The idea is to take the mag-
nitude part of the STFT of an input, denoted as X̂ ∈ Rr×h

�0 ,
where r denotes the number of frequency bins and h the num-
ber of frames, and then approximate it by the product of two
non-negative matrices W ∈ Rr×k

�0 and H ∈ Rk×h
�0 :

X̂ ≈ WH , (3)

where k is the number of dictionary vectors. A column in W
can represent the frequency distribution of a specific pitch of
an instrument, and its time (frame) activation is given in the
corresponding row of H. To ensure that different subsets of
the dictionary are associated with different sources, an external
dataset with clean source signals is usually employed to learn
the dictionary offline [4]. Given W and X̂, the activation H
can be computed with a multiplicative update algorithm that
preserves the nonnegativity of the solution [57]. The jth source
can then be recovered by taking the inverse STFT of the product
of the corresponding dictionary vectors and activation patterns.
In the score-informed setting, we can learn W directly from X̂
(i.e. without using an external dataset), by properly imposing
constraints on different subsets of the dictionary for different
sources [46].

It can be seen that NMF assumes the reconstruction can be
done using the magnitude part of the STFT, leaving the phase
information unaddressed. To estimate the time-domain source
signals, the phase of the mixture is usually used directly in the
inverse STFT. On one hand, it has been noted that magnitude
additivity does not hold since the concurrent sources are typi-
cally not in-phase [58]. On the other hand, copying the phase of
mixture to the individual source signals might lead to perceptual
artifacts, as phase also carries important timbre information [59],
[60]. This issue can be mitigated by using the complex variant
of the NMF [8], [9], phase reconstruction methods such as mul-
tiple input spectrogram inversion (MISI) or consistent Wiener
filtering [61]–[64], or other elaborated designs [13]–[15]. For
example, Kameoka proposed a time-domain spectrogram fac-
torization algorithm [15] that optimizes both W and H with a
fidelity term defined in the time domain. Although such methods
are promising and relevant, they do not share the advantages of
the proposed approach outlined in Section I.

As musical audio is often stereo, it is possible to exploit the
spatial information from the two channels for better separation
[52], [56]. In this paper, we downmix the stereo signals into
mono-channel ones and consider a monaural source separation
problem. The development of the multi-channel version of the
proposed approach is left as a future work.

CSC is conceptually closely related to shift-invariant sparse
coding [21], [65]. We refer readers to [23] for a detailed review
and an extensive discussion on the relations between CSC and
shift-invariant sparse coding.

While CSC has been predominantly applied to computer vi-
sion problems thus far [20]–[25], shift-invariant sparse coding
has been applied to audio source separation since a decade ago
[66]–[68]. However, possibly due to the high computational
complexity involved, these algorithms have not been evaluated
with a dataset of reasonable size. For example, Mørup et al.
[68] considered only a very simplified scenario of separating
an organ from a piccolo in their experiment. To the best of our
knowledge, the work reported in the present paper represents
the first attempt to systematically evaluate the performance of
a modern CSC algorithm for both score-informed and blind
(i.e. in the case of MPE-informed) source separation of musical
sources.

III. ALGORITHM

A. Convolutional Sparse Coding

Selecting the l2 and l1 norms respectively for f(·) and g(·)
in Eq. (1) leads to the Convolutional Basis Pursuit DeNoising
(CBPDN) [23] form of CSC:

arg min
{αi }i∈K

1
2

∥∥∥x −
∑
i∈K

di ∗ αi

∥∥∥2

2
+

∑
i∈K

λi ‖αi‖1 . (4)

We can see that αi and di play similar roles as a row in H and
a column of W in NMF do, respectively. The major difference
is that CSC uses the convolution operator for l1-regularized
regression [69] and does not require the variables to be non-
negative. The most efficient CBPDN algorithm proposed thus
far [22], [23] is based on the ADMM algorithm [70], which
introduces auxiliary variables {βi}k

i=1 to Eq. (4):

arg min
{αi },{βi }

1
2

∥∥∥x −
∑
i∈K

di ∗ αi

∥∥∥2

2
+

∑
i∈K

λi ‖βi‖1 s.t. αi = βi ,

(5)
and then iteratively solves the following sub-problems:

{αi}(τ +1) = arg min
{αi }

1
2

∥∥∥x −
∑

i

di ∗ αi

∥∥∥2

2

+
ρ

2

∑
i

∥∥αi − β
(τ )
i + γ

(τ )
i

∥∥2
2 , (6)

{βi}(τ +1) = arg min
{βi }

∑
i

λi‖βi‖1

+
ρ

2

∑
i

∥∥α
(τ +1)
i − βi + γ

(τ )
i

∥∥2
2 , (7)

γ
(τ +1)
i = γ

(τ )
i + α

(τ +1)
i − β

(τ +1)
i , (8)
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where τ indexes the iteration numbers, ρ is a positive penalty
parameter, and γi is the Lagrange multiplier [70] employed to
enforce the equality constraint in Eq. (5). Sub-problem (7) is a
classic l1-minimization problem that can be efficiently solved in
O(kn) via the soft-thresholding (shrinkage) operator [19]. Sub-
problem (6) is much more expensive as it involves a number of
convolutions. An efficient solution is possible by exploiting the
convolution theorem, transforming the problem to the frequency
domain via the Fast Fourier Transform (FFT)

arg min
{α̂i }

1
2

∥∥∥x̂ −
∑

i

d̂i◦α̂i

∥∥∥2

2
+

ρ

2

∑
i

‖α̂i − β̂i + γ̂i‖2
2 , (9)

where the variables x̂, d̂i , α̂i , β̂i and γ̂i represent x, di , αi ,
βi , γi in the Fourier domain, respectively, and ◦ represent the
element-wise (Hadamard) product. The initial algorithm based
on this approach exploited the structure of Eq. (9) to decompose
it into n independent k × k linear systems, solving via Gaussian
elimination with computational cost O(k3n) [24]. In this paper,
we adopt a more recent approach [22] that exploits additional
structure in the n independent linear systems, giving O(kn)
computational cost for solving these systems, and O(kn log n +
kn) cost, dominated by the computation of the FFT, for solving
Eq. (6). This approach makes it possible to use a larger number
of dictionary filters (k) in the context of source separation.

B. Segmentation and Temporal Continuity

It can be seen from the previous discussion that the compu-
tational bottleneck of CSC is now related to the FFT. Instead
of using the full-length audio signal as the input, for better
efficiency we may want to partition the signal into a number
of shorter segments. This can be done either by uniformly seg-
menting the audio signal with fixed-length windows, or by using
automatic, audio-based segmentation methods [71] to ensure the
homogeneity of each segment. It is also possible to segment the
audio by estimated onset times [72], [73], though this may lead
to overly short segments (e.g. shorter than a note). Another ad-
vantage of partitioning the audio signal is that in such a segment
level we can expect a small number of non-zero elements in the
solution of CSC (as compared with the full-length signal), and
therefore the CSC problem might be easier to solve.

No matter which method is adopted to segment the signal, we
encounter a temporal discontinuity issue because of the circular
convolution operation, which is used both in solving the CSC
problem (4) and in reconstructing the individual source signals
(2). If the reconstruction does not apply circular convolution,
extra error would be introduced because of the discrepancy be-
tween Eq. (2) and the regression part of Eq. (4). However, when
circular convolution is employed, one may find discontinuities
in the boundaries of the segments due to the cyclic nature of
circular convolution [74, Section 6.3], leading to perceptible
impulses. This is a practical issue when applying CSC to the
audio domain.

To circumvent this issue, we propose to consider a slightly
extended window to perform CSC. Assume that the input audio
signal is partitioned into a number of non-overlapping segments
of the same length n. To recover the source signals for each

Fig. 2. Illustration of a heuristic that addresses the temporal discontinuity
issue when CSC is performed on shorter segments of a musical signal. (a)
An n-sample segment of a musical signal; (b) the extended window of length
n′ = n + 2u; (c) the extended n′-sample segment is used for CSC, but only
the reconstructions for the middle n samples are taken; (d) the dictionary filters,
which should be no longer than u.

of the segments, we take u extra samples before, and after,
the segment and use the extended segment to perform CSC.
In other words, x, the nominal window, is replaced by x′ ∈
Rn ′

, the extended window, in Eq. (4), where n′ = n + 2u. After
computing the estimated source e′j ∈ Rn ′

by (2), the first u and
last u samples are discarded. This simple heuristic ensuring the
temporal continuity across the segments is applicable regardless
of the segmentation method.4 In future work we will investigate
the application of alternative boundary handling methods [75].

In view of the convolution operation in Eq. (4), we can set u =
max({ti}i∈K), where ti denotes the length of the ith filter. In
other words, u should not be shorter than the longest dictionary
filter. An illustration is shown in Fig. 2.

C. CSC-Based Monaural Source Separation

Given an audio segment x, the proposed approach approxi-
mates it as the sum of convolutions with a set of pre-learned
dictionary filters {di}i∈K. As illustrated in Fig. 1, different
subsets of the filters are designed to represent the p possible
sources. Therefore, we can estimate the source signals {ej}p

j=1
that compose the segment in the time domain by Eq. (2).

Given an audio signal that is a temporal concatenation of a
number of audio segments, we use CSC to estimate the source
signals for each segment, and then align them in time to get
the estimated sources of the entire audio signal. The temporal
continuity issue can be addressed by the heuristic described in
Section III-B.

As we are using the dictionary filters to approximate the
input, it is desirable to have the input x longer than any of the

4As the optimization considers the extended window, the errors in the ex-
tended parts may lead to errors in α. However, we empirically found that the
benefit of temporal continuity across the segments outweighs such errors in
perceptual quality of the separation result.
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filters (i.e. n ≥ max({ti}i∈K)). Consequently, the length of the
input used in CSC is usually longer than the usual frame size
used in NMF approaches, suggesting that the proposed approach
takes into account longer temporal context while performing the
separation.

We should also note that, unlike the case of the dictionary
vectors in NMF, the dictionary filters in CSC do not need to
have the same length [23], as illustrated in Fig. 2(d).

D. Dictionary Learning

In the proposed approach, each dictionary filter must be as-
sociated with only one instrument. Therefore, a training dataset
of clean source signals for the instruments of interest is needed.
In the literature of NMF, pre-training a dictionary is sometimes
referred to as a supervised approach [53].

There are two approaches to build the dictionary. The first,
exemplar-based approach uses the clean source signals directly
as the filters [76], [77]. For example, we can treat recordings
of each individual note of each instrument (e.g. from A0 to C8
for piano) directly as the dictionary filters [27]. Although it is
easy to implement, this approach may not work well in practice
because of the possible mismatch between the input signal and
the dictionary. For example, a guitarist can express a pitch in
different durations, dynamics, and timbres [78]. Exhausting all
possible variations of each note is not possible.

The second approach, which is adopted in this paper, uses
optimization algorithms to learn the dictionary filters using a
formulation similar to the CSC formulation (4), thereby im-
proving the generalizability of the dictionary to unseen data.
Specifically, the following formulation can be used:

arg min
{d i },{αi , l }

1
2

∑
l∈Tq , j

∥∥∥zl−
∑
i∈Pq

di ∗ αi,l

∥∥∥2

2
+

∑
l∈Tq , j

∑
i∈Pq

λi‖αi,l‖1 ,

(10)
where zl is a clean source signal in the training set Tq ,j for the
qth pitch of jth source, and {di}i∈Pq ⊂Gj

is the corresponding
dictionary filters to be learned. Additional constraint on the norm
of the dictionary filters can be applied, for example to account
for the possibly varying length of the filters. Formulation (10)
can be solved via alternating minimization with respect to the
coefficients {αi,l}i∈Pq ⊂Gj ,l∈Tq , j

and the dictionary {di}i∈Pq ⊂Gj
,

using the algorithm described in [23].

E. Subdictionary Selection in the Score-Informed and
MPE-Informed Settings

In the score-informed setting, we can use the score informa-
tion to choose the subset of dictionary filters {di}i∈P , P ⊆ K
corresponding to the notes that are likely to present in a given
segment of the input mixture. Using the smaller subdictionary
avoids the possible confusion from similar yet irrelevant dictio-
nary filters (e.g. octave notes from the same instrument or the
same pitch from other instruments) and in turn simplifies the
separation task [26].

Note that the musical score only helps reduce the size of the
dictionary for each n-sample segment (i.e. we know which notes
occur in the segment). It is still the job of CSC to estimate the

activation pattern (i.e. when the dictionary filters activate) from
the mixture.

In the MPE-informed setting, even if the result of MPE is
perfect, we are given only the pitch, onset and duration of the
notes. We do not know which instrument plays which note, un-
less additional algorithms for instrument recognition and pitch
streaming are available [30], [37]. Therefore, although we can
use the same idea of choosing a subdictionary, we need to con-
sider the filters corresponding to the same pitch from all the
instruments in the MPE-informed setting, and the resulting sub-
dictionary can be at most p times larger than the one in the
score-informed setting. This will significantly amplify the gen-
eralizability issue in separation, as elements of the same pitch
from different instruments may work together to approximate
the notes observed in the mixture, if the instruments in the test-
ing mixture are not exactly the same as those used for training
(e.g. in terms of timbre characteristics). This may cause sig-
nificant leakage in source separation among instruments and
lead to poor separation result, as we will see from the result of
MPE-informed source separation using a non-oracle dictionary
in Section VI-B.

In practice, however, there might be errors in MPE. It could be
the presence of an extra pitch that does not actually exist (i.e. a
false positive), or the absence of an actually presented pitch (i.e.
a false negative). How the errors in MPE affect the performance
of MPE-informed source separation will be empirically studied
also in Section VI-B.

IV. EXPERIMENTAL SETUP

This section describes the datasets and performance metrics
employed in our evaluation. We will then evaluate source sep-
aration under the score-informed and MPE-informed settings
in Sections V and VI, respectively.

A. Datasets

We evaluate the proposed algorithm on the Bach10 dataset
compiled by Duan and Pardo [79]. The dataset consists of 10
pieces of 4-part J. S. Bach chorales, where the 4 parts (i.e.
soprano, alto, tenor and bass) are performed respectively by
violin, clarinet, saxophone and bassoon (i.e. p = 4), recorded
with a sampling rate of 44.10 kHz. The length of the pieces
ranges from 25 to 42 seconds, totaling 327 seconds. All the
music pieces are composed of the same four instruments. The
pitch, instrument, and onset/offset time for each note of the
pieces can be obtained from the musical scores of the pieces,
which have been aligned with the audio and been included in the
Bach10 dataset. The dataset contains 18, 17, 18, and 24 unique
pitches (from D2 to A5) for the four instruments, respectively.
There are in total 1,957 notes, some of which overlap in time.
To simplify our analysis, in case of temporal overlaps between
successive notes, we revise the score and set the offset time of
the earlier note to the onset time of the later note. The average
duration of the notes is 0.68 second, with standard deviation
being 0.56 second.

As an alternative source for building the dictionary, we also
use the single notes of the four instruments found in the Real



JAO et al.: MONAURAL MUSIC SOURCE SEPARATION USING CONVOLUTIONAL SPARSE CODING 2163

World Computing (RWC) Musical Instrument Sound dataset
[80]. Specifically, RWC contains the singe-note samples (i.e.
only a series of single notes from an specific instrument is
played in each recording) covering the full pitch range of a
variety of instruments, recorded with different dynamic levels
and playing techniques. We pick the samples corresponding to
the 4 instruments used in the Bach10 dataset, with three dynamic
levels (forte, mezzo-forte, and piano; meaning loud, moderately
loud, and soft) and the normal playing technique. This amounts
to 1,590 waveforms of single notes with variable length, totalling
4,310.50 seconds (i.e. 13 times longer than Bach10). There are
46, 40, 33, and 42 unique pitches (from A#1 to E7) respectively
for the four instruments, which cover all the pitches found in
Bach10.

B. Parameters for Dictionary Learning and CSC

We use single notes segmented from the clean source signals
of either Bach10 or RWC in learning the dictionary. Depending
on the algorithms being used (see Section V-A for more details),
different dictionaries will be learned. For CSC, the algorithm
described in Section III-D is used. Unless otherwise specified,
we learn |Pq | = κ = 4 filters for each pitch per instrument,
with the filter length being fixed to 0.10 second (ti = 4, 410),
∀i ∈ K. Each dictionary filter di is normalized by the l2 norm.
The resulting dictionary size is k = 308 if Bach10 is used, and
k = 644 for RWC. According to the instruments, the dictionary
filters form 4 groups {Gj}4

j=1 .
Given the dictionary and a test music piece (e.g. one of the

10 chorales), we partition the test piece into 0.25 second, half-
overlapping nominal windows (i.e. n = 11, 025) and then use
the score-informed CSC approach described in Section III-E to
recover the source signals. To deal with temporal discontinu-
ity issues, an extended window size n′ = n + 2ti = 19, 845 is
used. The values of n and ti are chosen such that each input
segment contains a handful of notes. For Bach10, the partition
leads to on average 268 segments per piece. Excluding the 3 seg-
ments that have no active notes, there are on average 5.45 active
notes (min: 4, max: 9) per segment. Each segment must contain
at least one active note from each of the four instruments.

Both dictionary learning and CSC (i.e. Eqs. (10) and (4)) are
implemented based on a pre-release version of the SPORCO
library [81]. Unless otherwise specified, we empirically set the
maximum number of iterations to 250 and 500, and the regu-
larization parameters λi ,∀i ∈ K, to 0.05 and 0.01, for dictio-
nary learning and CSC, respectively. For other parameters, we
adopt the default setting of SPORCO.5 We will report a param-
eter sensitivity test for CSC under the score-informed setting
in Section V-C.

Fig. 3 shows the dictionary filters learned by CSC from the
RWC dataset for D4, the only common pitch shared by the
four instruments in both Bach10 and RWC. We can see that
the filters corresponding to the same instrument have slightly
different shapes in both time and frequency domains. The filters
themselves do not reveal much information about the attack,

5The ADMM parameter ρ is empirically initialized to 50, and is adjusted
every 10 iterations to balance the associated primal and dual residuals [23].

Fig. 3. The waveform (upper) and magnitude spectrum (lower) for the 4
dictionary filters (from left to right) learned by CSC from the RWC dataset for
the pitch D4 for 4 instruments. The filter length is fixed to 0.10 second.

decay, sustain and release parts of the sound, for that can be taken
care of by varying amplitudes in the activation pattern {αi}k

i=1 .
We also find that the length of the filters can include from 7
(for D2) to 88 (for A5) periods of a pitch, which may provide
sufficient temporal context to model the pitches. Although it is
interesting to use varying filter lengths for different pitches, we
leave this as a future work.

C. Performance Metrics

We evaluate the separation for each of the 10 pieces of Bach10
and report the average result. The separation quality is measured
in terms of the source to distortion ratio (SDR), source to inter-
ferences ratio (SIR), and source to artifact ratio (SAR), which
account for all types of error, the interference error, and arti-
fact error, respectively [82]. These three are standard metrics
in source separation and can be computed by the Blind Source
Separation Eval (BSS_Eval) toolbox v3.0 [83]. Larger values
indicated better separation performance. As these metrics may
not perfectly reflect the perceptual separation quality, we also
provide in an accompanying website6 the audio files of the sep-
aration results for subjective evaluation.

V. EVALUATION OF SCORE-INFORMED SOURCE SEPARATION

A large number of source separation algorithms have been
proposed in the literature, such as the CMF [8], [9], convo-
lutive NMF [84], and shift-invariant PLCA [85]. As the main
purpose of our experiment is to evaluate the effectiveness of
the time-domain approach CSC against frequency-domain ap-
proaches, we only consider two well-known frequency-domain
approaches in our evaluation: score-informed NMF [46], [50]
and Soundprism [45]. Please note that we do not intend to com-
pare CSC against existing phase-aware methods such as CMF,
because CSC does not explicitly consider phase as an objective
in the optimization process.

6[Online] http://mac.citi.sinica.edu.tw/research/CSC_separation/
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A. Methods for Score-Informed Source Separation

The following methods are considered:
1) Score-informed CSC + oracle dictionary: As a synthetic

case implemented to test the possible upper bound perfor-
mance of the CSC approach, we assume that the score is
given and perfectly aligned, and that there is no mismatch
between the test signals and the dictionary. This oracle
dictionary is built from the clean source signals of the
Bach10 dataset.

2) Score-informed CSC + RWC dictionary: A more realistic
setting is to learn the dictionary from the RWC dataset.
Due to the possible mismatch between the test signals and
the dictionary, we experiment with using κ = 4, 8, and 12.
As RWC includes the full pitch ranges of the instruments,
the dictionary size is larger (e.g. k = 644 when κ = 4)
and therefore we empirically use a smaller value for the
regularization parameter λi = 0.003, ∀i ∈ K.

3) Score-informed NMF: We adjust the score-informed NMF
approach of Ewert and Müller [46] as the baseline. In this
frequency-domain approach, the dictionary W is learned
dynamically from the test music signal itself (i.e. not using
a pre-learned dictionary), with score-informed constraints
imposed on both the dictionary vectors and the segment-
level (for the same basis point as CSC) activation patterns.
Similar to score-informed CSC, we learn κ = 4 spectral
templates for each pitch per instrument. The STFT uses
Hamming window of 4,096 samples, with 50% overlap-
ping. The Kullback-Leibler divergence is employed as the
cost function, and the maximum number of iterations is
1,000.

4) Score-informed NMF + oracle/RWC dictionary: This vari-
ant of score-informed NMF uses a pre-learned dictionary
W instead of learning it on-the-fly. Score information is
only used to set constraints on the activation patterns. Sim-
ilar to CSC, we learn a dictionary either from the Bach10
single notes or the RWC single notes. As this setting usu-
ally converges earlier, the maximum number of iterations
is set to 500.

5) Soundprism: The last baseline we consider is the Sound-
prism approach proposed by Duan and Pardo [45]. It is
also a frequency-domain approach, but it uses a paramet-
ric approach to model the magnitude spectrum of each
pitch, taking into account possible overlapping harmon-
ics across pitches. The source codes of Soundprism are
available online [45].

For both Soundprism and NMF, we recover the time-domain
signals from the separated spectrograms by using the Wiener
filter [4]. For a fair comparison, the parameters of both NMF
and Soundprism have been properly tuned.

B. Result of Score-Informed Source Separation

The result is shown in Table I, where we use score-CSC and
score-NMF as a shorthand for score-informed CSC and NMF,
respectively. We show the averaged SDR, SIR, and SAR over the
ten chorales, for each of the 4 instruments (denoted as Vln, Cla,
Sax and Bsn, respectively) and the average (i.e. All) of them. In

case we need to test whether there is a significant performance
difference between two methods, we perform a one-tailed non-
parametric paired sign test between the per-piece average SDRs
computed over the four instruments (i.e. All).7 The following
observations can be made:

1) From the first four rows, we see remarkably better CSC
results are obtained using the oracle dictionary as opposed
to the ones learned from RWC.
Increasing the number of dictionary filters improves the
result, but using RWC dictionary with κ = 12 is still in-
ferior to using the oracle dictionary with κ = 4, and the
performance difference is significant (p-value < 0.001)
for averaged SDR. This shows the importance of reduc-
ing the mismatch between the dictionary and test signals.

2) For NMF, the oracle dictionary (6th row) also performs
consistently better than using a dictionary from RWC,
for all the three metrics and all the instruments. We find
that the oracle dictionary with κ = 4 (6th row) performs
significantly better than the RWC dictionary with κ = 12
(7th row). Learning the dictionary on-the-fly (5th row)
generally performs worse than using a pre-learned dictio-
nary, suggesting the benefit of learning a dictionary from
a larger, external dataset.

3) By comparing all the rows, we can see that CSC gen-
erally performs better than the prior arts NMF [46] and
Soundprism [45] in most of the instruments and metrics.
CSC using the oracle dictionary (1st row) performs the
best, with significant performance difference over either
NMF using the oracle dictionary (6th row) or Soundprism
(10th row). In the realistic setting where the dictionary
is learned from RWC, CSC still performs slightly bet-
ter than NMF (i.e. considering either the (4th, 9th), (3rd,
8th) or (2nd, 7th) row-pair). The performance difference
is significant (p-value < 0.05) for κ = 12. This probably
suggests that the magnitude of frequency can be well pre-
sented by only a few templates already, so there is little
gain using more templates. In contrast, it is useful to use
more dictionary filters in the time domain. We also ex-
amine whether CSC+RWC or NMF+RWC is better than
Soundprism and find that only CSC+RWC with κ = 12 is
significantly better (p-value < 0.05). Overall, these com-
parisons demonstrate the effectiveness of CSC.

4) By comparing the columns, we see that all the considered
methods perform the worst for the bassoon and the best
for violin, among the four instruments. Noting that the
bassoon plays the lowest part of the chorales and the vio-
lin plays the highest, it seems that the considered methods
do not work well for low-frequency components. It might
be possible to address this issue in CSC by setting differ-
ent values of λi for different instruments, but we do not
explore this further in this paper.

Fig. 4 shows the clean sources (ground truth) and the recov-
ered ones from the mixture by score-informed CSC using the
RWC dictionary (κ = 4), for a segment of Bach10 that contains

7The t-test is deemed inappropriate here as the distribution of data does not
pass Kolmogorov-Smirnov test. i.e., the distribution is unlikely to be Gaussian.
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TABLE I
RESULT OF SCORE-INFORMED SOURCE SEPARATION

Method SDR SIR SAR

Vln Cla Sax Bsn All Vln Cla Sax Bsn All Vln Cla Sax Bsn All

1 score-CSC + oracle dictionary (κ = 4) 10.49 8.66 9.30 5.37 8.45 23.87 18.32 16.31 9.23 16.94 10.72 9.34 10.45 8.24 9.69
2 score-CSC + RWC dictionary (κ = 12) 7.53 7.28 7.17 3.18 6.29 16.93 16.80 14.37 6.71 13.70 8.17 7.95 8.27 6.63 7.76
3 score-CSC + RWC dictionary (κ = 8) 7.22 7.05 7.15 3.09 6.13 16.73 16.78 14.44 6.69 13.66 7.85 7.70 8.24 6.48 7.57
4 score-CSC + RWC dictionary (κ = 4) 6.80 7.00 6.68 2.96 5.86 16.13 16.02 13.77 6.81 13.18 7.47 7.76 7.82 6.15 7.30

5 score-NMF [46] 5.41 7.63 6.55 2.62 5.55 16.47 15.05 13.51 7.27 13.07 5.88 8.77 7.76 5.23 6.91
6 score-NMF + oracle dictionary (κ = 4) 8.03 8.02 7.55 4.59 7.05 17.58 17.23 15.88 10.08 15.19 8.64 8.74 8.37 6.47 8.05
7 score-NMF + RWC dictionary (κ = 12) 6.74 6.86 6.73 3.10 5.86 15.66 15.91 15.17 7.86 13.65 7.50 7.57 7.54 5.59 7.05
8 score-NMF + RWC dictionary (κ = 8) 6.66 6.90 6.60 3.06 5.80 15.77 16.02 14.71 7.74 13.56 7.38 7.61 7.48 5.60 7.02
9 score-NMF + RWC dictionary (κ = 4) 6.25 7.03 6.32 3.04 5.66 15.14 15.34 14.32 7.91 13.18 7.02 7.91 7.24 5.49 6.91

10 Soundprism [45] 6.15 6.83 5.98 2.47 5.36 11.92 11.78 11.22 9.63 11.14 7.87 8.95 7.98 3.88 7.17

Fig. 4. The clean sources (left) and the recovered ones (middle) from the mix-
ture by score-informed CSC using the RWC dictionary (κ = 4) for a segment
of Bach10 that contains four notes, along with the corresponding activation
patterns (right).

a D4 from violin, an A3 from clarinet, an F3 from saxophone,
and a D3 from bassoon.8

C. Parameter Sensitivity Test

Fig. 5 shows how the performance of score-informed CSC
varies as a function of three parameters, fixing the dictionary to
the oracle one (κ = 4). From the leftmost plot, we see that the
performance of CSC actually reaches a plateau after 25 itera-

8It is the 2nd segment (i.e. 0.125–0.375 second) of the 4th piece in Bach10.
Recovering the sources from the mixture (shown in the bottom left corner) might
be challenging, due to the harmonic relations between the notes: e.g. a perfect
fifth (D3–A3) and an octave (D3–D4). Despite the challenge, given the score,
CSC can recover the sources quite well. We can for example observe the energy
increase in the attack part of the bassoon note in the separation result. We also
see from the activation patterns how CSC combines the dictionary filters, using
both positive and negative weights, to create the separation result.

Fig. 5. Performance of ‘score-informed CSC + oracle dictionary (κ = 4)’ as
we vary (a) the maximum number of iterations in CSC, (b) the length of the
nominal window (in second), and (c) the regularization parameter λ.

tions, and there is little gain going further. Therefore, although
we have set the maximum number of iterations to 500 in our
previous experiments to ensure convergence, for shorter runtime
one can use fewer iterations.9 The plateauing of the performance
of the algorithms at a low number of iterations has also been
observed in NMF-based algorithms [86].

The middle plot of Fig. 5 investigates the effect of the length
n of the nominal window. We can see improved result in all the
three metrics (especially in SIR) as n decreases, but the result
saturates after n is smaller than 0.25 second. We conjecture
that a shorter nominal window gives better results because of
the reduced complexity of the segment being processed and the
more accurate constraint on the activation pattern (i.e. selection
of the subdictionary). However, while the use of shorter nominal
window is more accurate and the demand on memory is lower,
it is more time consuming than using a long nominal window,
due to the increased number of segments. Therefore, there is a
trade-off.

Finally, the rightmost plot of Fig. 5 shows the effect of the
regularization parameter and suggests we can have slightly bet-
ter result in all the three performance metrics by setting λ to
0.005. Setting the value of λ too small degrades the result.

9We have included a naı̈ve GPU implementation of CSC in SPORCO [81],
which can further boost the time efficiency by an order of magnitude.
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TABLE II
RESULT OF MPE-INFORMED SOURCE SEPARATION

SDR SIR SAR

Oracle dictionary (κ = 4) Vln Cla Sax Bsn All Vln Cla Sax Bsn All Vln Cla Sax Bsn All

1 oracle MPE + CSC 8.24 2.49 5.23 2.82 4.69 15.74 6.33 9.86 5.21 9.28 9.48 5.86 7.56 8.10 7.75
2 CFP-based MPE [28] + CSC 8.23 0.94 4.82 2.09 4.02 16.57 5.51 9.53 5.03 9.16 9.22 4.07 7.13 6.54 6.74
3 C-NMF-based MPE [29] + CSC 8.04 1.87 5.19 2.16 4.32 15.44 5.39 9.82 4.64 8.82 9.30 5.65 7.51 7.41 7.47

4 oracle MPE + NMF 7.22 4.80 5.40 3.76 5.29 15.19 9.63 12.50 8.54 11.46 8.12 7.10 6.62 6.14 7.00
5 CFP-based MPE [28] + NMF 7.05 2.96 4.70 2.67 4.35 14.65 8.26 11.89 7.66 10.62 8.05 5.24 5.96 5.06 6.08
6 C-NMF-based MPE [29] + NMF 6.83 3.90 4.92 3.41 4.76 13.15 7.59 11.64 8.36 10.18 8.23 7.12 6.31 5.73 6.85

RWC dictionary (κ = 4)

7 oracle MPE + CSC 0.69 −1.51 −3.31 −0.30 −1.11 4.65 1.26 −1.69 2.26 1.62 4.26 4.35 5.81 5.31 4.93
8 CFP-based MPE [28] + CSC 0.34 −2.55 −3.99 −1.20 −1.85 4.58 0.20 −2.29 1.33 0.95 3.73 3.85 5.30 4.83 4.43

9 oracle MPE + NMF 1.79 −1.19 −3.73 −1.17 −1.08 6.76 1.59 −1.49 1.40 2.07 4.32 4.52 4.23 4.82 4.47
10 CFP-based MPE [28] + NMF 1.49 −2.60 −3.80 −1.80 −1.68 6.54 0.33 −1.36 0.89 1.60 4.03 3.46 3.78 4.28 3.89

VI. EVALUATION OF MPE-INFORMED SOURCE SEPARATION

When the score is not given, MPE can be used as a pre-
processing step to judiciously reduce the size of the dictionary.
This section continues to evaluate the performance of CSC and
NMF under the MPE-informed setting, using either the oracle
or the RWC dictionary. For simplicity, we consider only the case
κ = 4 in this evaluation.

A. Methods for MPE

We consider the following three methods for MPE:
1) Oracle MPE: This is a synthetic setting that assumes

the result of MPE is perfect. The only difference be-
tween this case and the score-informed setting is that we
are now not aware of the instrument labels of the notes
(i.e. which instrument plays each note). As discussed in
Section III-E, comparing with the score-informed setting,
the subdictionary can be p times larger.

2) CFP-based MPE: We consider two audio-based MPE al-
gorithms in this evaluation. The first one is the combined
frequency and periodicity (CFP) method proposed by Su
and Yang [28]. The basic idea is to exploit the common-
ality between a harmonic series formed in the frequency
domain and a sub-harmonic series formed in the quefrency
(i.e. lag) domain to identify pitches. The frame-level es-
timate of MPE is aggregated to the note-level by using a
moving median filter of 0.25 s in length [28]. Using the
parameter settings suggested in [28] can already perform
well for MPE in the Bach10 dataset, reaching 85.51%,
85.80% and 85.22% for frame-level F-score, precision
and recall, respectively.

3) C-NMF-based MPE: The other one is the constrained
NMF (C-NMF) algorithm proposed by Vincent et al.
[29].10 If the parameters of this algorithm is properly
tuned, the frame-level F-score can reach 79.78%, which
is not that inferior to the result of CFP. However, to make
the result of CFP and C-NMF more different, we deliber-

10Since we can also group the dictionary vectors according to pitch rather
than instrument, we can also use NMF for MPE.

ately tune the parameters of C-NMF11 toward high recall
rate, i.e., allowing for false positives (extra notes detected)
rather than false negatives (miss of true notes). The result-
ing frame-level F-score, precision, and recall are 64.47%,
49.30%, and 93.14% respectively. Please note that a pre-
cision rate close to 50% means that half of the MPE esti-
mates are redundant and do not correspond to real notes.

B. Result of MPE-Informed Source Separation

Result shown in Table II leads to the following observations:
1) Comparing with Table I, we see that using the MPE esti-

mates instead of the scores largely degrades the separation
quality, which may have been expected. The performance
difference between score-informed CSC (1st row in
Table I) and MPE-informed CSC (first 3 rows in Table II),
when using the oracle dictionary, is around 4 dB in av-
erage SDR (significant difference; p-value < 0.001). As
the main difference between oracle MPE and score is the
availability of note-level instrument labels, this result sug-
gests that automatic instrument recognition is needed to
close the performance gap. When the instrument labels
of the notes are not informed, it is possible that CSC will
reconstruct a source using dictionary filters corresponding
to other instruments. This can be seen from Fig. 6, which
shows that the bassoon note recovered by MPE-informed
CSC resembles the ground truth violin note, which is
actually one octave higher.

2) Comparing the first 3 rows of Table II shows that, despite
having different precision rates, MPE-informed CSC us-
ing any of the three MPE methods leads to similar per-
formance. As they all have high recall rates, this may
suggest that the recall rate of MPE is more important
than the precision rate for MPE-informed CSC. However,
the sign test reveals that the result of oracle MPE (1st row)
is significantly better (p-value < 0.001) than the result of
the other two methods (2nd and 3rd rows), suggesting that
the precision rate of MPE also matters.

11Specifically, we set the peak-picking threshold to 32 and β = 0.5 [29].
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Fig. 6. Separation results of (from left to right) MPE-informed CSC with the
oracle dictionary, MPE-informed NMF with the oracle dictionary, and MPE-
informed CSC with the RWC dictionary for the same segment of Bach10 as
Fig. 4. The MPE method considered here is CFP.

3) From rows 4–6 in Table II, we see that, when the oracle
dictionary is used, MPE-informed NMF performs slightly
better than MPE-informed CSC in SDR and SIR, but not in
SAR. With oracle MPE, MPE-informed NMF has 0.60 dB
higher average SDR than MPE-informed CSC, though
the performance difference is not significant. This finding
suggests that NMF-based methods may not be inferior to
CSC in non-score informed scenarios.

4) Interestingly, the lower SAR of MPE-informed NMF
(rows 4–6), as compared with MPE-informed CSC (rows
1–3), suggests the advantage of the time-domain approach
CSC in avoiding perceptual artifacts.

5) Among the four instruments, clarinet and bassoon suffer
remarkably due to the transition from the score-informed
to the MPE-informed setting for CSC. In contrast, we
do not see such remarkable degradation for particular
instruments in the result of NMF.

6) Finally, from rows 7–10 in Table II, we see the separa-
tion quality becomes even poorer when using the RWC
dictionary, instead of the oracle one. Both CSC and NMF
yield negative SDR values, but the performance difference
between them is not significant.12 This result shows that
source separation for Bach10 is in general challenging
and proper prior knowledge (e.g. score or training data
with similar timbre characteristics) is crucial.

Fig. 6 shows the separation result for three different MPE-
informed methods for the same segment of Bach10 used in
Fig. 4. From the result of MPE-informed CSC with the RWC
dictionary (i.e. the rightmost ones), we see how hard it is to
recover the sources. Concurrent notes with strong harmonic
relations are common in Bach10.

12We do not show in Table II the result of C-NMF-based MPE for the RWC
dictionary because that is close to the result of CFP-based MPE.

Fig. 7. Performance of MPE-informed CSC as a function of recall rates in
MPE, using the RWC dictionary for CSC and the C-NMF-based method for
MPE [29]. The F-scores of these five points are 0.23, 0.46, 0.65, 0.77, and 0.67;
the one with the highest F-score does not lead to the best separation result.

We further test the importance of the recall rate of MPE
by again varying the parameters of C-NMF-based MPE [29].
Result shown in Fig. 7 indicates that the separation quality in
all the three performance metrics improves almost linearly with
the recall rate. The best result is obtained when the recall rate of
MPE is the highest, which may not correspond to the parameter
setting yielding the highest F-score of MPE.

VII. CONCLUSION

In this paper, we have presented a novel time-domain ap-
proach for monaural music source separation, based on CSC.
We reported a comprehensive performance study that assesses
the strength of CSC, in both the score-informed and the more
practical MPE-informed settings. We also evaluated the case
where there is a mismatch in the acoustic content between the
dictionary and the test signals. Our results show that, in many
cases, the time-domain approach CSC compares favorably with
the classic frequency-domain approach NMF. However, when
the score is not given, NMF can sometimes perform better
than CSC.

Unlike NMF-based methods, the use of CSC in the audio
domain is still new and we believe there are many possible
ways to further improve the result. For example, we have not
optimized the filter length ti and regularization parameter λi for
different notes. The dictionary size can be further expanded for
better separation result. We can study other cost functions, such
as the Itakura Saito divergence [6] for the fidelity term f(·),
and the group Lasso [87] or some other temporal constraints
for the regularization term g(·) in Eq. (1). As suggested by
our experiments, a reliable instrument recognizer for per-note
instrument labels can be very helpful to MPE-informed source
separation. Another interesting research direction is to train a
dictionary only for a specific instrument (e.g. the piano) for
automatic transcription of a solo performance [88]. We note
that CSC is a generic approach and might be applied to other
audio problems such as melody transcription [44]. We also plan
to deeply investigate the role of phase in the future. This can
be done by systematically perturbing the phase of a source to
measure the effect of using the true phase, or by comparing the
performance of CSC with existing phase-aware methods.
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